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INVERSION ALGORITHMS FOR GEOPHYSICAL PROBLEMS 

I. INTRODUCTION .. 

The purpose of this note is to give a brief introduction to the concept 
of inversion and to discuss a few different approaches that have been 
considered.  After some analytical preliminaries, we deal with two specific 
algorithms that have been used for the 

(1) inversion of gravity data in order to retrieve the underlying 
topographic profile, and 

(2) inversion of radar measurements in order to retrieve ocean spectra. 

Further details and developments on this topic will constitute the 
subject of a future report. 

II. ANALYTICAL CONSIDERATIONS 

The inversion problem is analytically akin to the solution of a 
Fredholm integral equation of the first kind: 

b  ■ ■ 

yin)   - I f(|)K(^r?)de + e(r,) . (1) 
a 

Here a,b are given constants and f(^) is the unknown function which, when 
averaged over the closed interval (a,b) according to the kernel K(^,77), must 
reproduce the observed function yCrj) allowing for a random error e(ri) .     In 
many applications the kernel of the integral equation is referred to as the 
"transfer function" of the physical problem. 

Methods of solution for eq. (1) can be helpful in elucidating the 
procedure in cases of geophysical interest. 

We can express the solution of eq. (1) as a linear combination of a set 
of functions according to the scheme: 

m 
f(0 = 2 x^ (O + 4>'\o;   . (2) 

the choice of the set {'^j(O)   and the number ra of functions will be made 
according to the specific problem and can be left, at least for now, open. 
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Substituting eq. (2) into eq. (1) and assuming that we know the values 
y(vO   =■ Yi of y(f7) at n distinct points, we get a (n x m) linear system: 

m 

where 

y. = 2 A.. X. + e.,  (i = 1,2..., n) (3) 

b 

A,j-J*j(«K«,,,)d5 
a 

and the 

*i - e(T7^) + J /(e)K(^,r7^)d^ 

■■-a 

are known as the "error" terms. 

The suitability of the set of functions 0,- and the number m of the 
components of the set are two factors that vary according to the physics of 
the problem; also the nature of the kernel function is dictated by the 
specific physical problem. 

Thus, according to this procedure, the solution of the integral 
equation has been reduced to a linear system. One question which is 
appropriate to clarify is the significance of the parameters x^.  We can 
show that the Xj represent the values of the integrals of the unknown 
function f(|) according to the basis functions 0^(O : in other words, we ce 
say that the Xj are the moments of f(|) with respect to the 0-; (|) provided 
that <^*(^) be chosen to be orthogonal to the elements of the basis, i.e. 

I 0*(?)\(?)d^ - 0 . (4) 

One possible choice is to assume the basis to be of the "boxcar" type, i.e. 

*j<" 

in which case, we have 

- 1    ^°^ ^j-1 -^-^j' 

0     outside the interval; 

x.= 
J J 

and this is the average of f(0 within the interval A^: 



The number of parameters required for an adequate representation will 
depend upon the smoothness of the unknown function in the given interval. 
Most of the existing methods are based upon constructing linear averages of 
the unknown function whose values are defined by empirical data.  This is 
essentially the approach first introduced by Backus and Gilbert (1968, 
1970). 

It has long been recognized that inverse problems do not yield a unique 
solution.  This is due to the fact that there exist subsets of solutions 
satisfying the homogeneous integral equation which might not correspond to 
geophysical reality but which do contribute to the general solution of the 
nonhomogeneous data equations.  Steps must be taken to eliminate them. 

One such step is to minimize some suitable functional of the variables 
and errors. Thus, to eq. (3) we could add the "variational" condition that 
an expression of the following kind 

n 
q - E  [f(x ) + h(e^)] (5) 

r-1 ^ 

be a minimvim. 

Another possible step is the incorporation within the original system 
of a priori information by treating the unknowns as Gaussian random 
variables having mean values x and C^^ as covariance matrix.  To elaborate 
this point, let us rewrite eq. (3) in vector notation 

y - Ax + e (6) 

where A is a matrix, and let us suppose that we can build some averages of 
our data set which might have a useful geophysical interpretation and be 
stable functions of the data.  Let us denote this averaging operation by 

A 

X - Hy, 

so that we can write 
A 

X - HAx + He. 

We can then construct the "estimation error" as 

X - X - (HA - I) X + He (7) 

where I is the identity matrix. 

If we assume a covariance matrix C^ for the parameters x and a 
covariance matrix^Cg for the errors e, then the covariance matrix C for the 
estimation error x - x is given by 

G =- (HA - I)Cx(HA - I)T + HCgRT, (g) 

where the upper T denotes the transpose matrix operation.  We are assuming 
here that the a priori estimates XQ are statistically independent of the 
data errors e. 



The matrix H which minimizes the diagonal terms in C can be shown to be 

H - Cx A'^CAC^A'^ + Cg)'-'- (9) 

by using procedures akin to least squares problems.  This matrix is known as 
the "minimum variance estimator" and has been used for averaging purposes 
among others by Jackson (1979). 

III.  INVERSION OF GRAVITY DATA 

We must devise an algorithm that will allow us to determine the density 
profile of various lower layers based upon certain gravity anomaly 
measurements taken at the upper surface.  Such an inversion scheme can be 
applied to ascertain the topography of seamounts and the structuring of the 
uppermost layers of the ocean floor. 

We assume a two-dimensional fixed geometry consisting of an array of 
identical rectangular blocks of variable densities.  We denote by x^ the 
abscissa of the i-th data point and by (Xj.Zj) the coordinates of the 
centroid of the j-th block of dimensions td,n) and of an as yet unknown 
density 5^. 

For a fixed depth ZA ,   we reach a linear system 

g - A? + e (10) 

where g is the vector of the given measurements g^ (i-1,2,...,n), 5 is the 
vector of the unknown densities 5j (j-1,2,...,m) and e is the vector of the 
noise e^ associated with each of the data points.  A is a matrix whose 
elements a^^j represent the influence of the j-th block on the i-th gravity 
value, and can be represented in terms of the dimensions of the block and 
its relative position with respect to the location of the measurement.  It 
is essentially the gravity generated by a vertical slab.  Its expression is 
available in Lanzano (1984). 

It is a very ascertained fact, see, e.g. Fisher and Howard (1980), that 
the above linear system of equations when considered in its square form 
(i.e. when the number of data points equals the number of blocks) is a 
singular system.  We must, therefore, take into account a situation whereby 
the number m of blocks is larger than the number n of data points which 
allows for an infinity of solutions. 

In order to bracket our solution and exclude many density distributions 
that lack geophysical significance, we shall make recourse to a minimum 
principle.  We impose to minimize a suitable functional of densities and 
errors.  Specifically, we choose here to minimize the following quadratic 
form of densities and errors 

-►2    -••2      I 
f = W.5  + W e (11) 5      e ' 

with appropriate weighting matrices of diagonal form.  This functional 
expression was first introduced by Last and Kubik (1983).  The physical 
significance of this condition will become evident from what follows. 



The area of the configuration is given by 

/ . »? \ 
Area = - dh Lim 

£-*0 (A 
J 

e.S^.   1 

because - 

Lim 
5.2 

2 

i:: 
when 5^0 

e-*0 when 5=0 . 

(12) 

(13) 

Consequently, by choosing 

W'-"- - Diag (e + 5^) 

we can minimize the area of the model, i.e., maximize its compactness, by 
adopting a very small value for e.  An algorithm leading to the most compact 
configuration presents many attractive features because it can be used to 
enhance the contrast between the denser seamounts and the lighter ocean 
water for each solution of our system. 

Once the weighting matrices are fixed, we can solve our linear system 
(for m>n) subject to the condition that the functional be a minimum by means 
of a least squares procedure.  Specifically, we find that 

-IT    -IT 
W. A  (AW/A + 
o       6 

W'-"- - Diag (e + 5?) 

\') ■' 

(14) 

This turns out to be a nonlinear problem, because the weighting matrix 
Mg  which appears in the resolvent equation depends on the 5^'s which are 
still unknown .  This can be overcome by performing an iterative algorithm: 
we can choose the zero-order approximation to be 

W (0) - I (identity matrix) 

and subsequently we must have 

•1 
W (k-1) = e + 

33 

.(k-1) 
-, 2 

when k>I 

The k-th order iteration can then be written as follows: 

Kk) W (k-1) 
1-1 T 

A   A W (k-1) 
1-1 

A  + W (k-1) 
-1 -1 

(15) 



In dealing with the noise terms, it has been found appropriate, see also 
Jackson (1979) , to adopt a weighting matrix of the sort 

W'""" = i^ Diag (A W'-*- A'^) (16) 
e    o 6 

where ig is an apriori estimate of the noise to signal ratio.  The signal 
being that part of the observed anomaly which is attributable to the 
structure being investigated. 

The above matrix is independent of the errors themselves.  Subsequent 
iterations will give rise to 

r^(k-i)-| -^ ^ ,2  ^(k 

L ^   J ii     °  '" 
-1) 

where 

-1 T D - AW- A  . 

Convergence is deemed to have been achieved when further iterations do not 
appreciably alter the density distribution. 

The constant e  should be chosen as small as possible but compatible 
with the computer so as not to cause any instability. 

This algorithm can be upgraded to include an upperbound for the density 
values; i.e., we can impose the condition S^<5*  for every j=l,2,...,m and 
for each depth.  The algorithm must reset equal to 5*  the density of any 
block that goes beyond this preassigned limit and will downplay that block 
in the following step of the iterative procedure.  This can be achieved by: 
(1) subtracting the gravity contribution for that particular block from the 
total gravity anomaly (data set), and (2) assigning a very small weight to 
that block so that its contribution will be negligible. 

This is essentially a Penalty Function approach and can be performed by 
using a unit step function, see Lanzano and Myers (1985).  Thus a small 
correction is applied to those blocks that had reached the limiting density 
5*; should this correction be negative, bringing the total density of those 
blocks below the limit, the normal weighting functions should be used then, 
allowing those blocks to be used freely in the minimization procedure. 

This algorithm has been tested at NRL on synthetic data using a small 
computer (HP7000).  Stability and convergence required at least 12 
iterations.  The length of the computations did suggest that use of a faster 
computer is certainly desirable. 

IV.  INVERSION OF RADAR MEASUREMENTS 

Another problem of interest concerns the determination of ocean spectra 
obtainable by means of experiments which depend on the direction of the wave 
propagation.  If d   is the direction of propagation for a wave of frequency 



f, the spectrum S (9,f)   is related to the data vector d via an integral 
equation of the sort: 

2n 

d -f S(9,f)   k(9)   69  +e   . (17) 

o 

Here k is the vector kernel of the physical process and e is a random error 
vector. 

The inverse problem consists of determining S by solving from eq. (17) 
once the d and e vectors are given.  This inversion cannot be unique, since 
the directional distribution is a continuous function, whereas the data set 
d is of finite dimension.  The most effective method of solution is to add 
to the integral equation a functional of related variables to be minimized. 

We choose the functional to depend on the errors, furthermore it should 
establish a minimum variance of the spectriom from a particular preferred 
spectrum SQ (i.e. the model to be expected) and must also express the 
positiveness of the spectrum.  This outlook has been adopted and elaborated 
upon primarily by Long and Hasselmann (1979). 

The functional to be minimized will be written as 

2n 2ir 

^7 - e'^ Qe + a I  (S-|s|)^dd "^ ^ f  ^^'^o^^ '^^' ^'^^^ 
o o 

where Q is a symmetric, positive definite square matrix such that its 
inverse V-Q"-'- is the covariance matrix of the errors 

V - <e e > .     ■ 

This covariance matrix V can be determined using standard 
techniques of time series analysis once some assumptions have been made 
concerning the distribution of errors. 

In eq. (18), a and 0  are two weighting parameters whose values 
represent the relative importance of the conditions to which they are 
attached.  They can be considered as Lagrangian multipliers in the sense of 
the classical calculus of variations approach, which is aimed at minimizing 
a functional to which auxiliary conditions have been appended. 

The selection of the Q matrix establishes a probability region around 
the domain d such that 

p(e,d) =    |vr^/2 exp (- - ;^ V"^ :) (19) 



represents the probability of obtaining the values d + e. 

We must therefore study the variation exhibited by the functional 

•yCs.lsI.e) 

caused by all possible variations 5S of the spectrum S(S,f)  within a class 
of allowable solutions to eq. (17). 

For this purpose, let us recall that e and S are related because, from 
eq. (17), one has 

27r 

e - d - I S(9,f)k(9)dB   . 

o 

Since neither the vector k (i.e., the physical process) nor the vector d 
(i.e., the data points) are supposed to undergo any variation, the 
variations 5S and 5e can be related according to 

27r 

5e - - I  [k(^)5S] d^ . (20) 

o     . . 

Thus, the variation STJ  can be written in terms of partial derivatives and we 
reach an expression of the sort 

drt        af?   de 
Sri  -    I 

We get 

''- l-^^--r 
Y /dS   d|s|\ 

0 

2« 

+ /3  I [2(S - S^) 5S] d(? + 2e''' Q Se 

When S>0, the integrand in the first term will vanish identically; on the 
other hand when S<0, we have 

dls| 

We can therefore write in both cases that 5rj=0 is equivalent to 



2^ 

I  {[4a(S-Is|) + 2/3(S-S^) - 28"^ Qk]5S} d^ = 0, 

o 

where use has been made of eq. (20) to eliminate the 5e 

Due to the arbitrariness of 5S,   the integrand must vanish, leading to 

4a(S-|s|)+ 2^(S-S ) = 2e^ Qk . 

S - S^ + - e"^ Q k . (21) 

When S>0, we get 

1 

'o ■ is 

Whereas, when S<0, we have 

(8a + 2/3)S - 2;3S + 2e'^ Qk , 

°=      ^ - u^rry ^^o'-j ^ ^ ^^ • (22) 

Knowing k and assuming a certain e, we can thus determine the function S 
which minimizes the T)  functional provided that we choose the two parameters 
(a,/3). 

Let us rewrite the last term within parenthesis in an equivalent but 
more convenient way.  Since 

-►T -*■ 
e  Qk 

is a scalar, it must coincide with its transpose.  Applying the property 
that the reverse order of the transposed factors is used in performing the 
transpose of a product of matrices, we can write 

-*T  -♦    -+T  -► T   -►T  T-+   -►T  -+ 
e Qk - (e^ Qk)^ - k^ Q e - k^ Qe ; (23) 

the last step is due to the fact that Q is a symmetric matrix. 

We must now impose that the condition pertaining to the positiveness of 
S be verified exactly: this necessitates to let a  approach infinity within 
eq. (18). 

Eq. (22) will then vanish; whereas eq. (21) can be rewritten, through 
the use of eq. (23), as 

S - S^ + - (k Qe) . (24) 



This function S, however, should also be a solution of eq. (17); we must 
therefore substitute S from eq. (24) into eq. (17).  In doing so, we get 

l-K ,     1-K 

■  I -o k) d5 = e + - -►T  -1 -► -♦ 
(k V  e) k d^ . (25) 

The left-hand side of eq. (25) is a known quantity; both e and /3, however, 
are still unknown'.- The above equation turns out to be a Fredholm integral 
equation of the second kind with respect to e with variable parameter /3; in 
it the unknown function e appears both inside and outside the integral sign. 

Equation (25) can be solved by iterative procedures, noting however 
that any initial choice for e or subsequent iterations should necessarily 
imply the determination of the covariance matrix V.  Once e is determined by 
solving eq. (25), eq. (24) will provide the desired spectrum S. 

Various possibilities exist for solving eq. (25) and they will be 
discussed extensively in a future report.  Our present analysis has taken us 
from the original eq. (17) to this final eq. (25) through the process of 
assioming: (1) only positive values for S, and (2) a minimiam variation of S 
from an expected function Sg. 

By imposing these physical limitations which are of plausible 
acceptance, we have gained a computational advantage because eq. (25) is 
easier to solve than the original eq. (17). 

An equation similar to our eq. (25) above was used by Long and 
Hasselmann (1979) to measure the directional properties of swells in shallow 
waters for the purpose of comparing various swell decay models available. 
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